Finance-union.ru

Деньги и власть
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сложный процент будущая стоимость денежной единицы

Сложный процент будущая стоимость денежной единицы

Временна́я це́нность де́нег (ВЦД) или стоимость денег во времени (СДВ), стоимость денег с учетом фактора времени (СДУФВ), теория временной стоимости денег, дисконтированная существующая ценность — концепция, на которой основано предположение о том, что деньги должны приносить процент — ценность сегодняшних денег выше, чем ценность той же суммы, получаемой в будущем.

Временна́я це́нность де́нег — одно из фундаментальных понятий финансов. Временна́я ценность денег основана на предпосылке, что каждый предпочтёт получить определенную сумму денег сегодня, чем то же самое количество в будущем, если все остальное одинаково. В результате, когда каждый вносит деньги на счёт в банк, каждый требует (и зарабатывает) проценты. Деньги, полученные сегодня, более ценны, чем деньги, полученные в будущем количеством процентов, который деньги могут заработать. Если 90 сегодняшних рублей через год увеличатся до 100 рублей, то эти 100 рублей, подлежащие выплате через год, сегодня стоят 90 рублей.

«Золотое» правило бизнеса гласит:

Сумма, полученная сегодня, больше той же суммы, полученной завтра.

Согласно принципу временно́й ценности денег, сегодняшние поступления ценнее будущих. Отсюда вытекает, по крайней мере, два важных следствия:

необходимость учёта фактора времени при проведении финансовых операций;

некорректность (с точки зрения анализа долгосрочных финансовых операций) суммирования денежных величин, относящихся к разным периодам времени.

Сложным процентом принято называть эффект, когда проценты прибыли прибавляются к основной сумме и в дальнейшем сами участвуют в создании новой прибыли.

При расчете суммы будущей стоимости (Sc) применяется формула:

Соответственно, сумма сложного процента определяется:

где Ic — сумма сложных процентов за установленный период времени; Р — первоначальная стоимость денег; n — количество периодов, по которым осуществляется расчет процентных платежей; i — используемая процентная ставка, выраженная в долях единицы.

Формулы расчета сложных процентов являются базовыми в финансовых вычислениях. Экономический смысл множителя (1 + i )n состоит в том, что он показывает, чему будет равен один рубль через nпериодов при заданной процентной ставке i. Для упрощения процедуры расчетов разработаны специальные финансовые таблицы для расчета сложных процентов, которые позволяют определить будущую и настоящую стоимость денег.

Настоящая стоимость денег (Рс) при начислении сложных процентов равна:

Сумма дисконта (Dc) определяется:

При расчете временной стоимости денег в условиях применения сложных процентов необходимо иметь в виду, что на результаты оценки влияет не только процентная ставка, но и число интервалов выплат в течение всего платежного периода, что приводит к тому, что в ряде случаев более выгодно инвестировать деньги под меньшую ставку, но с большим количеством выплат в течение платежного периода.

Чистая приведённая стоимость (чистая текущая стоимость, чистый дисконтированный доход, англ. Net present value, принятое в международной практике анализа инвестиционных проектов сокращение — NPV или ЧДД) — это сумма дисконтированных значений потока платежей, приведённых к сегодняшнему дню. Показатель NPV представляет собой разницу между всеми денежными притоками и оттоками, приведенными к текущему моменту времени (моменту оценки инвестиционного проекта). Он показывает величину денежных средств, которую инвестор ожидает получить от проекта, после того, как денежные притоки окупят его первоначальные инвестиционные затраты и периодические денежные оттоки, связанные с осуществлением проекта. Поскольку денежные платежи оцениваются с учетом их временной стоимости и рисков, NPV можно интерпретировать, как стоимость, добавляемую проектом. Ее также можно интерпретировать как общую прибыль инвестора. В пользу такой интерпретации говорит то, что отношение NPV к совокупной величине дисконтированных инвестиционных затрат называется Индекс прибыльности (англ. Profitability Index или сокращенно PI).

Иначе говоря, для потока платежей CF (Cash Flow), где CFt — платёж через t лет (t = 1. N) и начальной инвестиции IC (Invested Capital) в размере IC = − CF0 чистый дисконтированный доход NPV рассчитывается по формуле:

где i — ставка дисконтирования.

Шесть функций сложного процента

Таблица для визуального восприятия. Сами формулы смотреть ниже.

Первая функция – будущая стоимость денежной единицы.

Это фактор, используемый для расчета стоимости денежной единицы при условии, что последняя будет удерживаться в течение определенного времени, принося периодически накапливаемый процент.

Будущая стоимость денежной единицы рассчитывается по формуле:

Вторая функция – будущая стоимость аннуитета.

Многие финансовые операции имеют вид не разовых платежей, а серии регулярных выплат/доходов – арендные взносы, погашения долгосрочного кредита, получение процентов по облигациям, платежи в пенсионный фонд и т.д. Если эти платежи происходят через строго определенные промежутки времени, то такая серия называется аннуитетом. Аннуитет – серия платежей, разделенных одинаковыми временными периодами.

Платежом (взносом) называется единовременный вклад (доход), производимый в каждом временном периоде. Он обозначается через РМТ (от англ. payment – платеж). Если платеж делается в конце платежного периода, он называется обычным, а если в начале – авансовым. Чаще на практике встречается обычный платеж.

Формула будущей стоимости единичного аннуитета, как сумма членов геометрической прогрессии имеет вид:

Эту формулу также называют фондом накопления капитала, т.к. она показывает накопленную к концу n — го периода денежную сумму, при условии вложения в каждом периоде одной денежной единицы под i процентов.

Третья функция – фактор фонда возмещения капитала.

Часто необходимо знать, какой платеж нужно периодически вносить, чтобы к концу n — го периода времени накопить заданную сумму. Эта задача решается с помощью фактора фонда возмещения капитала SFF1.

Фактором фонда возмещения называется величина периодического платежа, которая обеспечивает в течение n периодов при заданной ставке процента накопление денежной суммы капитала равной одной денежной единице.

Четвертая функция – текущая стоимость денежной единицы.

Текущая (в настоящий момент времени) реальная стоимость одной денежной единицы ( PV 1), получаемой в конце n — го периода времени при известной доходности i , находится из формулы:

Пятая функция – текущая стоимость единичного аннуитета.

Часто бывает так, что необходимо текущую стоимость серии платежей, т.е. аннуитета. Например, решается вопрос об инвестировании некоторой суммы денег в актив, который будет приносить регулярный доход. Приобретать актив целесообразно в том случае, если текущая стоимость будущих доходов будет не меньше стоимости актива. Логика получения пятой функции сложного процента видна из формулы:

Шестая функция – взнос на амортизацию капитала.

Эта функция применяется для определения величины платежа при амортизации кредита. Амортизацией кредита называется погашение долга по кредиту в течение определенного периода времени. (Следует отличать различные значения слова «амортизация», например, «амортизация кредита» и «амортизация основных фондов»).Часто план погашения кредита предусматривает возврат долга равными величинами через равные промежутки времени. Т.е. платежи по погашению кредита являются аннуитетами. Каждый такой платеж представляет собой сумму амортизации (погашения) основного долга и процентного платежа на остаток долга.

Читать еще:  Денежная система великобритании презентация

Легко понять, что понижающиеся процентные платежи из–за убывающего остатка долга должны компенсироваться возрастающей амортизацией основного долга, чтобы сумма оставалась постоянной. Величина этой суммы в расчете на единицу долга определяется формулой:

Сложный процент будущая стоимость денежной единицы

Для приведения денежных потоков к сопоставимому виду существуют так называемые множительные таблицы . В приложении 1 приведены два типа таблиц.

Таблицы типа А систематизированы по видам функций сложного процента. Для их применения необходимо определить используемую функцию и на пересечении строки, соответствующей периоду, и столбца, адекватного ставке дисконта, найти множитель, позволяющий откорректировать ту или иную сумму.

Таблицы типа В сгруппированы по величине процентной ставки. Для решения задачи в этом случае необходимо сначала найти страницу, совпадающую со ставкой дисконта, а затем на пересечении столбца, совпадающего с нужной функцией, и строки, соответствующей периоду, найти множитель.

Расчет будущей стоимости основан на логике сложного процента (см.рис.), который представляет геометрическую зависимость между первоначальным вкладом, процентной ставкой и периодом накопления:
FV=S(1+i) , где:
FV — величина накопления,
S — первоначальный вклад,
i — процентная ставка,
n — число периодов начисления процентов.

Задача, которая по сути является алгоритмом, позволяющим решать самые разнообразные инвестиционные вопросы , может быть сформулирована следующим образом:

Какая сумма будет накоплена вкладчиком через три года, если первоначальный взнос составляет 400 тыс.руб., проценты начисляются ежегодно по ставке 10 % ?

Таблицы типа Б.
1) Найдем страницу, соответствующую процентной ставке — 10%
2) В колонке № 1 найдем фактор, соответствующий периоду накопления.
3) Период накопления — 3, фактор — 1,3310
4) Рассчитаем сумму накопления
400[FV]3 10% =400*1,3310=532,4 тыс.руб.

Таблицы типа А.
1) В таблице А-3 на пересечении колонки, соответствующей процентной ставке (10%), и строки, соответствующей периоду начисления процентов (3 года), найдем фактор 1,3310.
2) Рассчитаем сумму накопления
400[FV]3 10% = 400*1,3310 = 532,4 тыс.руб.

Таблица 3.1. Процесс накопления в динамике

Таким образом, сложный процент предполагает начисление процентов не только на сумму первоначального взноса, но и на сумму процентов, накопленных к концу каждого периода. Это возможно только в случае реинвестирования суммы начисленных процентов, т.е. присоединения их к инвестиционному капиталу.

Техника простого процента предполагает арифметическую зависимость между суммой вклада, процентной ставкой и периодом накопления. Следовательно, простой процент начисляется только один раз в конце срока депозитного договора. Если бы приведенная выше ситуация предполагала начисление простого процента, то накопленная сумма составит:
400 (1+ 0,10 * 3) = 520 тыс.руб.

Периодичность начисления процентов оказывает влияние на величину накопления. Если вклад в сумме 1000 руб. хранить 2 года в банке, начисляющем 24% годовых, то в зависимости от части начисления процентов, накопленная сумма составит:
a) ежегодное начисление процента 1000[FV]2 24% =1000 * 1,5376=1537,6
b) полугодовое начисление процента 1000[FV]4 12% =1000 * 1,5735=1573,5
c) ежеквартальное начисление процента 1000[FV]8 6% =1000 * 1,5938=1593,8
d) ежемесячное начисление процента 1000[FV]24 2% =1000 * 1,6081=1608,1.

Следовательно, чем чаще начисляются проценты, тем больше накопленная сумма. При более частом накоплении необходимо откорректировать процентную ставку и число периодов начисления процентов:

Процентная ставка =(Годовая ставка х число месяцев в периоде начисления)/12

Число периодов = Число периодов начисления за один год * Число лет накопления

Для определения периода, необходимого для удвоения первоначального вклада, используется правило 72-х. Это правило дает наиболее точные результаты, если процентная ставка находится в интервале 3—18 %.

Например, если годовая ставка 24% и начисление процентов осуществляется ежегодно — удвоение произойдет через 3 года (72:24).

Математические основы оценочной деятельности. Шесть функций денежной единицы

Итак, для определения стоимости собственности, приносящей до ход, необходимо определить текущую стоимость денег, которые будут получены через какоето время в будущем.

Известно, а в условиях инфляции куда более очевидно, что деньги изменяют свою стоимость с течением времени. Основными операциями, позволяющими сопоставить разновременные деньги, являются операции накопления (наращивания) и дисконтирования.

Накопление – это процесс приведения текущей стоимости денег к их будущей стоимости, при условии, что вложенная сумма удерживается на счету в течение определенного времени, принося периодически нака пливаемый процент.

Дисконтирование – это процесс приведения денежных поступлений от инвестиций к их текущей стоимости.

В оценке эти финансовые расчеты базируются на сложном процессе, когда каждое последующее начисление ставки процента осуществля ется как на основную сумму, так и на начисленные за предыдущие периоды невыплаченные проценты.

Всего рассматривают шесть функций денежной единицы, основанных на сложном проценте. Для упрощения расчетов разработаны таблицы шести функций для известных ставок дохода и периода накопления ( I и n ), кроме того, можно воспользоваться финансовым калькуля тором для расчета искомой величины.

1 функция: Будущая стоимость денежной единицы (накопленная сумма денежной единицы), ( fvf , i , n ).

Если начисления осуществляются чаще, чем один раз в год, то формула преобразуется в следующую:

k – частота накоплений в год.

Данная функция используется в том случае, когда известна текущая стоимость денег и необходимо определить будущую стоимость де нежной единицы при известной ставке доходов на конец определенного периода ( n ).

Для примерного определения срока удвоения капитала (в годах) необходимо 72 разделить на целочисленное значение годовой ставки до хода на капитал. Правило действует для ставок от 3 до 18%.

Типичным примером для будущей стоимости денежной единицы может служить задача.

Определить, какая сумма будет накоплена на счете к концу 3го

года, если сегодня положить на счет, приносящий 10% годовых, 10 000

FV=10000[(1+0,1) 3 ]=13310.

2 функция : Текущая стоимость единицы (текущая стоимость реверсии (перепродажи)), ( pvf , i , n ).

Текущая стоимость единицы является обратной относительно бу дущей стоимости.

Если начисление процентов осуществляется чаще, чем один раз в год, то

Примером задачи может служить следующая: Сколько нужно вложить сегодня, чтобы к концу 5го года получить на счете 8000, если годовая ставка дохода 10%.

3 функция : Текущая стоимость аннуитета ( pvaf , i , n ).

Читать еще:  Денежная масса японии

Аннуитет – это серия равновеликих платежей (поступлений), отстоящих друг от друга на один и тот же промежуток времени.

Выделяют обычный и авансовый аннуитеты. Если платежи осуще ствляются в конце каждого периода, то аннуитет обычный, если в начале – авансовый.

Формула текущей стоимости обычного аннуитета:

PMT – равновеликие периодические платежи. Если частота начислений превышает 1 раз в год, то

Формула текущей стоимости авансового аннуитета:

Договор аренды дачи составлен на 1 год. Платежи осуществляются ежемесячно по 1000 рублей. Определить текущую стоимость аренд ных платежей при 12% ставке дисконтирования, если а) платежи осуществляются в конце месяца; б) платежи осуществляются в начале каждого месяца.

4 функция : Накопление денежной единицы за период ( fvfa , i , n ).

В результате использования данной функции определяется буду щая стоимость серии равновеликих периодических платежей (поступле ний).

Платежи также могут осуществляться в начале и в конце периода.

Формула обычного аннуитета:

Определить сумму, которая будет накоплена на счете, приносящем 12% годовых, к концу 5го года, если ежегодно откладывать на счет 10 000 рублей а) в конце каждого года; б) в начале каждого года.

5 функция : Взнос на амортизацию денежной единицы ( iaof , i , n ) Функция является обратной величиной текущей стоимости обыч ного аннуитета. Взнос на амортизацию денежной единицы используется для определения величины аннуитетного платежа в счет погашения кредита, выданного на определенный период при заданной ставке по креди ту.

Амортизация – это процесс, определяемый данной функцией, включает проценты по кредиту и оплату основной суммы долга.

При платежах, осуществляемых чаще, чем 1 раз в год используется следующая формула:

Примером может служить следующая задача: Определить, каким должны быть платежи, чтобы к концу 7го года погасить кредит в 100 000 рублей, выданный под 15% годовых.

6 функция : Фактор фонда возмещения ( sff , i , n )

Данная функция обратна функции накопления единицы за период. Фактор фонда возмещения показывает аннуитетный платеж, который необходимо депонировать под заданный процент в конце каждого пе риода для того, чтобы через заданное число периодов получить искомую сумму.

Для определения величины платежа используется формула:

При платежах (поступлениях), осуществляемых чаще, чем 1 раз в год:

Примером может служить задача.

Определить, какими должны быть платежи, чтобы к концу 5го го да иметь на счете, приносящем 12% годовых, 100 000 рублей. Платежи осуществляются в конце каждого года.

Аннуитетный платеж, определяемый данной функцией, включает выплату основной суммы без выплат процента.

Discovered

О финансах и не только…

Будущая стоимость денег

Будущая стоимость денег (future value; FV) — сумма инвестированных в настоящий момент денежных средств, в которую они превратятся через определенный период времени с учетом определенной ставки процента. Определение будущей стоимости денег связано с процессом наращения стоимости, осуществляемом по специальным алгоритмам.

Будущая стоимость денег рассчитывается на базе концепции стоимости денег во времени, основываясь на процентных ставках и настоящей стоимости. Будущая стоимость инвестиций зависит от того, каким методом начисляются проценты: простые проценты, сложные проценты или аннуитет.

Идея, лежащая в основе концепции будущей стоимости денег, состоит в том, что $1000 сегодня стоят больше, чем $1000 через год. Так происходит потому что деньги могут быть помещены на сберегательный счет или размещены в форме других инвестиций, а, следовательно, принесут доход в течение года. Это называют концепцией стоимости денег во времени, которая применяется во многих инвестиционных схемах.

При начислении простых процентов формула для расчета будущей стоимости (FV) инвестиций имеет следующий вид:

где PV — настоящая стоимость (сумма, которая инвестируется в настоящий момент);
i — процентная ставка за период начисления процентов (например, если проценты начисляются раз в год, то годовая; если проценты начисляются ежемесячно, то за месяц);
t — количество периодов времени, в течение которого начисляются проценты (например, если проценты начисляются ежемесячно, а деньги инвестируются на 1,5 года, то t составит 18, то есть 18 месяцев в течение которых будут начисляться проценты).

По многим видам инвестиций начисляются сложные проценты. В этом случае формула для расчета их будущей стоимости имеет следующий вид:

Например, если первоначальная сумма инвестиций составляет $1000, процентная ставка 8% годовых, начисление процентов осуществляется ежемесячно, а инвестиционный горизонт составляет 2 года, то будущая стоимость составит:

Это означает, что $1000 сегодня будет стоить $1172,89 через два года при условии ежемесячного начисления процентов по ставке 8% годовых.

Однако процентные ставки могут колебаться, причем существенно. Например, если они возрастут до 12% годовых, то новый инвестор, который осуществит аналогичную инвестицию, через два года получит сумму равную:

При этом инвестиции, осуществленные ранее под 8%, станут менее привлекательными, и их продажа станет возможной только с дисконтом. Напротив, если процентные ставки упадут ниже 8% годовых, новые инвестиции будут менее привлекательными. Поэтому продажа старых инвестиций будет осуществляться выше номинальной стоимости, то есть с премией.

Аннуитеты являются финансовыми продуктами, которые обеспечивают регулярные выплаты по фиксированной процентной ставке. Самыми простыми формами аннуитетов являются регулярное внесение средств на сберегательный счет, по которому проценты выплачиваются ежемесячно, или ипотека с ежемесячными платежами, включающими принципал и проценты. Для расчета будущей стоимости аннуитета используется следующая формула:

где A – размер платежа при аннуитете.

Примером аннуитетов может служить пожизненный аннуитет. По сути, он является средствами, которые накапливаются за счет регулярного внесения платежей клиентом в течение определенного периода времени, а затем начинают выплачиваться в виде стабильного потока доходов, обычно после выхода клиента на пенсию. При оценке стоимости пожизненного аннуитета тщательно оценивается его будущая стоимость, а также учитываются такие факторы, как пенсионный возраст и процентные ставки.

Сложный процент будущая стоимость денежной единицы

Временна́я це́нность де́нег (ВЦД) или стоимость денег во времени (СДВ), стоимость денег с учетом фактора времени (СДУФВ), теория временной стоимости денег, дисконтированная существующая ценность — концепция, на которой основано предположение о том, что деньги должны приносить процент — ценность сегодняшних денег выше, чем ценность той же суммы, получаемой в будущем.

Временна́я це́нность де́нег — одно из фундаментальных понятий финансов. Временна́я ценность денег основана на предпосылке, что каждый предпочтёт получить определенную сумму денег сегодня, чем то же самое количество в будущем, если все остальное одинаково. В результате, когда каждый вносит деньги на счёт в банк, каждый требует (и зарабатывает) проценты. Деньги, полученные сегодня, более ценны, чем деньги, полученные в будущем количеством процентов, который деньги могут заработать. Если 90 сегодняшних рублей через год увеличатся до 100 рублей, то эти 100 рублей, подлежащие выплате через год, сегодня стоят 90 рублей.

Читать еще:  Производительность труда в денежном выражении

«Золотое» правило бизнеса гласит:

Сумма, полученная сегодня, больше той же суммы, полученной завтра.

Согласно принципу временно́й ценности денег, сегодняшние поступления ценнее будущих. Отсюда вытекает, по крайней мере, два важных следствия:

необходимость учёта фактора времени при проведении финансовых операций;

некорректность (с точки зрения анализа долгосрочных финансовых операций) суммирования денежных величин, относящихся к разным периодам времени.

Сложным процентом принято называть эффект, когда проценты прибыли прибавляются к основной сумме и в дальнейшем сами участвуют в создании новой прибыли.

При расчете суммы будущей стоимости (Sc) применяется формула:

Соответственно, сумма сложного процента определяется:

где Ic — сумма сложных процентов за установленный период времени; Р — первоначальная стоимость денег; n — количество периодов, по которым осуществляется расчет процентных платежей; i — используемая процентная ставка, выраженная в долях единицы.

Формулы расчета сложных процентов являются базовыми в финансовых вычислениях. Экономический смысл множителя (1 + i )n состоит в том, что он показывает, чему будет равен один рубль через nпериодов при заданной процентной ставке i. Для упрощения процедуры расчетов разработаны специальные финансовые таблицы для расчета сложных процентов, которые позволяют определить будущую и настоящую стоимость денег.

Настоящая стоимость денег (Рс) при начислении сложных процентов равна:

Сумма дисконта (Dc) определяется:

При расчете временной стоимости денег в условиях применения сложных процентов необходимо иметь в виду, что на результаты оценки влияет не только процентная ставка, но и число интервалов выплат в течение всего платежного периода, что приводит к тому, что в ряде случаев более выгодно инвестировать деньги под меньшую ставку, но с большим количеством выплат в течение платежного периода.

Чистая приведённая стоимость (чистая текущая стоимость, чистый дисконтированный доход, англ. Net present value, принятое в международной практике анализа инвестиционных проектов сокращение — NPV или ЧДД) — это сумма дисконтированных значений потока платежей, приведённых к сегодняшнему дню. Показатель NPV представляет собой разницу между всеми денежными притоками и оттоками, приведенными к текущему моменту времени (моменту оценки инвестиционного проекта). Он показывает величину денежных средств, которую инвестор ожидает получить от проекта, после того, как денежные притоки окупят его первоначальные инвестиционные затраты и периодические денежные оттоки, связанные с осуществлением проекта. Поскольку денежные платежи оцениваются с учетом их временной стоимости и рисков, NPV можно интерпретировать, как стоимость, добавляемую проектом. Ее также можно интерпретировать как общую прибыль инвестора. В пользу такой интерпретации говорит то, что отношение NPV к совокупной величине дисконтированных инвестиционных затрат называется Индекс прибыльности (англ. Profitability Index или сокращенно PI).

Иначе говоря, для потока платежей CF (Cash Flow), где CFt — платёж через t лет (t = 1. N) и начальной инвестиции IC (Invested Capital) в размере IC = − CF0 чистый дисконтированный доход NPV рассчитывается по формуле:

где i — ставка дисконтирования.

Шесть функций сложного процента

Таблица для визуального восприятия. Сами формулы смотреть ниже.

Первая функция – будущая стоимость денежной единицы.

Это фактор, используемый для расчета стоимости денежной единицы при условии, что последняя будет удерживаться в течение определенного времени, принося периодически накапливаемый процент.

Будущая стоимость денежной единицы рассчитывается по формуле:

Вторая функция – будущая стоимость аннуитета.

Многие финансовые операции имеют вид не разовых платежей, а серии регулярных выплат/доходов – арендные взносы, погашения долгосрочного кредита, получение процентов по облигациям, платежи в пенсионный фонд и т.д. Если эти платежи происходят через строго определенные промежутки времени, то такая серия называется аннуитетом. Аннуитет – серия платежей, разделенных одинаковыми временными периодами.

Платежом (взносом) называется единовременный вклад (доход), производимый в каждом временном периоде. Он обозначается через РМТ (от англ. payment – платеж). Если платеж делается в конце платежного периода, он называется обычным, а если в начале – авансовым. Чаще на практике встречается обычный платеж.

Формула будущей стоимости единичного аннуитета, как сумма членов геометрической прогрессии имеет вид:

Эту формулу также называют фондом накопления капитала, т.к. она показывает накопленную к концу n — го периода денежную сумму, при условии вложения в каждом периоде одной денежной единицы под i процентов.

Третья функция – фактор фонда возмещения капитала.

Часто необходимо знать, какой платеж нужно периодически вносить, чтобы к концу n — го периода времени накопить заданную сумму. Эта задача решается с помощью фактора фонда возмещения капитала SFF1.

Фактором фонда возмещения называется величина периодического платежа, которая обеспечивает в течение n периодов при заданной ставке процента накопление денежной суммы капитала равной одной денежной единице.

Четвертая функция – текущая стоимость денежной единицы.

Текущая (в настоящий момент времени) реальная стоимость одной денежной единицы ( PV 1), получаемой в конце n — го периода времени при известной доходности i , находится из формулы:

Пятая функция – текущая стоимость единичного аннуитета.

Часто бывает так, что необходимо текущую стоимость серии платежей, т.е. аннуитета. Например, решается вопрос об инвестировании некоторой суммы денег в актив, который будет приносить регулярный доход. Приобретать актив целесообразно в том случае, если текущая стоимость будущих доходов будет не меньше стоимости актива. Логика получения пятой функции сложного процента видна из формулы:

Шестая функция – взнос на амортизацию капитала.

Эта функция применяется для определения величины платежа при амортизации кредита. Амортизацией кредита называется погашение долга по кредиту в течение определенного периода времени. (Следует отличать различные значения слова «амортизация», например, «амортизация кредита» и «амортизация основных фондов»).Часто план погашения кредита предусматривает возврат долга равными величинами через равные промежутки времени. Т.е. платежи по погашению кредита являются аннуитетами. Каждый такой платеж представляет собой сумму амортизации (погашения) основного долга и процентного платежа на остаток долга.

Легко понять, что понижающиеся процентные платежи из–за убывающего остатка долга должны компенсироваться возрастающей амортизацией основного долга, чтобы сумма оставалась постоянной. Величина этой суммы в расчете на единицу долга определяется формулой:

Ссылка на основную публикацию
Adblock
detector